Что такое молекула краткое определение. Молекула и атом: что это, что общего и в чем разница. Что мы знаем о молекуле самого распространенного вещества на Земле

Молекулы с мультиплетностью , отличной от единицы (то есть с неспаренными электронами и ненасыщенными валентностями) - радикалами .

Молекулы относительно высокой молекулярной массы , состоящие из повторяющихся низкомолекулярных фрагментов, называются макромолекулами .

С точки зрения квантовой механики молекула представляет собой систему не из атомов, а из электронов и атомных ядер, взаимодействующих между собой.

Особенности строения молекул определяют физические свойства вещества , состоящего из этих молекул.

К веществам, сохраняющим молекулярную структуру в твёрдом состоянии, относятся, например, вода, оксид углерода (IV), многие органические вещества. Они характеризуются низкими температурами плавления и кипения. Большинство же твёрдых (кристаллических) неорганических веществ состоят не из молекул, а из других частиц (ионов, атомов) и существуют в виде макротел (кристалл хлорида натрия, кусок меди и т. д.).

Состав молекул сложных веществ выражается при помощи химических формул .

Энциклопедичный YouTube

    1 / 5

    ✪ Молекула. Атом. Вещество

    ✪ Видеоурок "Объяснение электрических явлений"

    ✪ Строение атома. Объяснение электрических явлений | Физика 8 класс #10 | Инфоурок

    ✪ Урок 151. Средняя кинетическая энергия молекул многоатомного газа

    ✪ Что такое атом?

    Субтитры

История

На международном съезде химиков в Карлсруэ в 1860 году были приняты определения понятий молекулы и атома. Молекула была определена как наименьшая частица химического вещества, обладающая всеми его химическими свойствами.

Классическая теория химического строения

В классической теории химического строения молекула рассматривается как наименьшая стабильная частица вещества, обладающая всеми его химическими свойствами.

Молекула данного вещества имеет постоянный состав, то есть одинаковое количество атомов, объединённых химическими связями , при этом химическая индивидуальность молекулы определяется именно совокупностью и конфигурацией химических связей, то есть валентными взаимодействиями между входящими в её состав атомами, обеспечивающими её стабильность и основные свойства в достаточно широком диапазоне внешних условий. Невалентные взаимодействия (например, водородные связи), которые зачастую могут существенно влиять на свойства молекул и вещества, образуемого ими, в качестве критерия индивидуальности молекулы не учитываются.

Центральным положением классической теории является положение о химической связи, при этом допускается наличие не только двухцентровых связей, объединяющих пары атомов, но и наличие многоцентровых (обычно трёхцентровых, иногда - четырёхцентровых) связей с «мостиковыми» атомами - как, например, мостиковых атомов водорода в боранах , природа химической связи в классической теории не рассматривается - учитываются лишь такие интегральные характеристики, как валентные углы , диэдральные углы (углы между плоскостями, образованными тройками ядер), длины связей и их энергии .

Таким образом, молекула в классической теории представляется динамической системой, в которой атомы рассматриваются как материальные точки и в которой атомы и связанные группы атомов могут совершать механические вращательные и колебательные движения относительно некоторой равновесной ядерной конфигурации, соответствующей минимуму энергии молекулы и рассматривается как система гармонических осцилляторов .

Молекула состоит из атомов, а если точнее, то из атомных ядер, окруженных определенным числом внутренних электронов, и внешних валентных электронов, образующих химические связи. Внутренние электроны атомов обычно не участвуют в образовании химических связей. Состав и строение молекул вещества не зависят от способа его получения.

Атомы объединяются в молекуле в большинстве случаев с помощью химических связей. Как правило, такая связь образуется одной, двумя или тремя парами электронов, находящихся в совместном владении двух атомов, образуя общее электронное облако, форма которого описывается типом гибридизации. Молекула может иметь положительно и отрицательно заряженные атомы (ионы).

Состав молекулы передается химическими формулами. Эмпирическая формула устанавливается на основе атомного соотношения элементов вещества и молекулярной массы .

Геометрическая структура молекулы определяется равновесным расположением атомных ядер. Энергия взаимодействия атомов зависит от расстояния между ядрами. На очень больших расстояниях эта энергия равна нулю. Если при сближении атомов образуется химическая связь, то атомы сильно притягиваются друг к другу (слабое притяжение наблюдается и без образования химической связи), при дальнейшем сближении начинают действовать электростатические силы отталкивания атомных ядер. Препятствием к сильному сближению атомов является также невозможность совмещения их внутренних электронных оболочек.

Каждому атому в определенном валентном состоянии в молекуле можно приписать определенный атомный, или ковалентный радиус (в случае ионной связи - ионный радиус), который характеризует размеры электронной оболочки атома (иона) образующего химическую связь в молекуле. Размер электронной оболочки молекулы, является условной величиной. Существует вероятность (хотя и очень малая) найти электроны молекулы и на большем расстоянии от её атомного ядра. Практические размеры молекулы определяются равновесным расстоянием, на которое они могут быть сближены при плотной упаковке молекул в молекулярном кристалле и в жидкости . На больших расстояниях молекулы притягиваются друг к другу, на меньших - отталкиваются. Размеры молекулы можно найти с помощью рентгеноструктурного анализа молекулярных кристаллов. Порядок величины этих размеров может быть определен из коэффициентов диффузии, теплопроводности и вязкости газов и с плотности вещества в конденсированном состоянии. Расстояние, на которое могут сблизиться валентно не связанные атомы одного и того же или разных молекул, может быть охарактеризована средними значениями так называемых ван дер ваальсовых радиусов (Ǻ).

Радиус Ван-дер-Ваальса существенно превышает ковалентный. Зная величины ван дер ваальсовых, ковалентных и ионных радиусов, можно построить наглядные модели молекул, которые бы отражали форму и размеры их электронных оболочек.

Ковалентные химические связи в молекуле расположены под определенными углами, которые зависят от состояния гибридизации атомных орбиталей. Так, для молекул насыщенных органических соединений характерно тетраэдральное (четырехгранное) расположение связей, образуемых атомом углерода, для молекул с двойной связью (С = С) - плоское расположение атомов углерода, для молекул соединений с тройной связью (С º С) - линейное расположение связей. Таким образом, многоатомная молекула имеет определенную конфигурацию в пространстве, то есть определенную геометрию расположения связей, которая не может быть изменена без их разрыва. Молекула характеризуется той или иной симметрией расположения атомов. Если молекула не имеет плоскости и центра симметрии, то она может существовать в двух конфигурациях, которые представляют собой зеркальные отражения друг друга (зеркальные антиподы, или стереоизомеры). Все важнейшие биологические функциональные вещества в живой природе существуют в форме одного определенного стереоизомера.

Квантохимическая теория химического строения

В квантохимической теории химического строения основными параметрами, определяющими индивидуальность молекулы, является её электронная и пространственная (стереохимическая) конфигурации. При этом в качестве электронной конфигурации, определяющей свойства молекулы принимается конфигурация с наинизшей энергией, то есть основное энергетическое состояние.

Представление структуры молекул

Молекулы состоят из электронов и атомных ядер, расположение последних в молекуле передаёт структурная формула (для передачи состава используется т. н. брутто-формула). Молекулы белков и некоторых искусственно синтезированных соединений могут содержать сотни тысяч атомов. Отдельно рассматриваются макромолекулы полимеров.

Молекулы являются объектом изучения теории строения молекул, квантовой химии , аппарат которых активно использует достижения квантовой физики , в том числе релятивистских её разделов. Также в настоящее время развивается такая область химии, как молекулярный дизайн. Для определения строения молекул конкретного вещества современная наука располагает колоссальным набором средств: электронная спектроскопия , колебательная спектроскопия , ядерный магнитный резонанс и электронный парамагнитный резонанс и многие другие, но единственными прямыми методами в настоящее время являются дифракционные методы, как то: рентгеноструктурный анализ и дифракция нейтронов .

Взаимодействие атомов при образовании молекулы

Природа химических связей в молекуле оставалась загадкой до создания квантовой механики - классическая физика не могла объяснить насыщаемость и направленность валентных связей. Основы теории химической связи были заложены в 1927 году Гайтлером и Лондоном на примере простейшей молекулы Н 2 . Позже, теория и методы расчетов были значительно усовершенствованы.

Химические связи в молекулах подавляющего большинства органических соединений является ковалентными. Среди неорганических соединений существуют ионные и донорно-акцепторные связи, которые реализуются в результате обобществления пары электронов атома. Энергия образования молекулы из атомов во многих рядах подобных соединений приближенно аддитивна. То есть можно считать, что энергия молекулы - это сумма энергий её связей, имеющих постоянные значения в таких рядах.

Аддитивность энергии молекулы выполняется не всегда. Примером нарушения аддитивности являются плоские молекулы органических соединений с так называемыми сопряженными связями, то есть с кратными связями, которые чередуются с единичными. Сильная делокализация p-состояний электронов приводит к стабилизации молекулы. Выравнивание электронной плотности вследствие коллективизации p-состояний электронов по связям выражается в укорочении двойных связей и удлинении одинарных. В правильном шестиугольнике межуглеродных связей бензола все связи одинаковы и имеют длину, среднюю между длиной одинарной и двойной связи. Сопряжение связей ярко проявляется в молекулярных спектрах. Современная квантовомеханическая теория химических связей учитывает делокализации не только p-, но и s-состояний электронов, которая наблюдается в любых молекулах.

В подавляющем большинстве случаев суммарный спин валентных электронов в молекуле равен нулю. Молекулы, содержащие неспаренные электроны - свободные радикалы (например, атомный водород Н, метил ·CH 3), обычно неустойчивы, поскольку при их взаимодействии друг с другом происходит значительное снижение энергии вследствие образования ковалентных связей .

Межмолекулярное взаимодействие

Спектры и строение молекул

Электрические, оптические, магнитные и другие свойства молекул связаны с волновыми функциями и энергиями различных состояний молекул. Информацию о состояниях молекул и вероятности перехода между ними дают молекулярные спектры.

Частоты колебаний в спектрах определяются массами атомов, их расположением и динамикой межатомных взаимодействий. Частоты в спектрах зависят от моментов инерции молекул, определение которых с спектроскопических данных позволяет получить точные значения межатомных расстояний в молекуле. Общее число линий и полос в колебательном спектре молекулы зависит от её симметрии.

Электронные переходы в молекулах характеризуют структуру их электронных оболочек и состояние химических связей . Спектры молекул, которые имеют большее количество связей, характеризуются длинноволновыми полосами поглощения, попадающими в видимую область. Вещества, которые построены из таких молекул, характеризуются окраской; к таким веществам относятся все органические красители.

Молекулы в химии, физике и биологии

Понятие молекулы является основным для химии, и большей частью сведений о строении и функциональность молекул наука обязана химическим исследованиям. Химия определяет строение молекул на основе химических реакций и, наоборот, на основе строения молекулы, определяет каким будет ход реакций.

Строением и свойствами молекулы определяются физические явления, которые изучаются молекулярной физикой. В физике понятие молекулы используется для объяснения свойств газов, жидкостей и твёрдых тел. Подвижностью молекул определяется способность вещества к диффузии , её вязкость, теплопроводность и т. д. Первое прямое экспериментальное доказательство существования молекул было получено французским физиком Жаном Перреном в 1906 году при изучении броуновского движения .

Поскольку все живые организмы существуют на основе тонко сбалансированного химического и нехимического взаимодействия между молекулами, изучение строения и свойств молекул имеет фундаментальное значение для биологии и естествознания в целом.

Развитие биологии, химии и молекулярной физики привели к возникновению молекулярной биологии , которая исследует основные явления жизни, исходя из строения и свойств биологически функциональных молекул.

В первый раз слово «молекула» большинство из нас услышали в школе на уроках природоведения. Это одно из основополагающих понятий современной химии, которое сделало возможным дальнейшее познание окружающей среды.


Что же такое молекула, из чего она состоит и зачем вообще нужно изучать молекулы?

Откуда взялось слово «молекула»?

Как и большинство химических терминов, слово «молекула» имеет в основе латынь. Оно образовано из двух слов: «мoles», имеющего значение массы, тяжести и «-cule» — уменьшительного суффикса. Дословное значение – маленькая масса.

В современной химии молекула – мельчайшая частица какого-либо вещества. Даже одна молекула любого вещества обладает всеми свойствами, которые характерны для этого вещества.

Если молекулу разделить на составные части, вещество, которое она составляла, уничтожится, распавшись на более простые элементы – атомы. На этой основе сформирован весь свод понятий, образующих современную химическую науку и практику.

Из чего состоит молекула?

Как здание состоит из кирпичиков, а любой механизм, сделанный человеком – из деталей, так и молекула состоит из простых «кирпичиков» — атомов химических элементов.


Некоторые молекулы состоят всего из одного атома – например, молекулы металлов. Но подавляющее большинство веществ, которые нас окружают, имеют гораздо более сложное молекулярное строение.

Строение любой молекулы можно записать в виде химической формулы, которая указывает, из атомов каких химических элементов состоит вещество и сколько атомов каждого вещества содержится в одной молекуле. Молекула кислорода состоит из двух одинаковых атомов элемента кислорода.

Всем известна формула воды: H2O, которая означает, что каждая молекула воды содержит один атом кислорода и два атома водорода. Еще одна известная буквально всем формула – С2Н5ОН, формула этилового спирта, которая показывает, что это вещество состоит из двух атомов углерода (С), шести атомов водорода (Н) и одного атома кислорода (О).

В процессе взаимодействия друг с другом вещества обмениваются химическими элементами, вступая в реакции. При этом образуются новые вещества, обладающие новыми свойствами, отличными от свойств исходных веществ.

Так, уголь (практически полностью состоящий из углерода), сгорая (взаимодействуя с кислородом, содержащимся в воздухе), образует углекислый газ – вещество, непригодное для дыхания, в отличие от кислорода.


Молекулы в обычном состоянии не несут электрического заряда и называются нейтральными. Те молекулы, которые получают положительный или отрицательный заряд, называются ионами, а процесс – ионизацией. Молекулы, атомы которых имеют неспаренные электроны, называются радикалами.

Чему равна масса молекулы?

Конечно, таких чувствительных весов, которые позволяли бы взвесить одну молекулу вещества, не существует в арсенале современной науки. Масса молекул и атомов вычисляется другими способами. Принято считать, что масса молекулы любого вещества равна сумме масс всех атомов, из которых состоит это вещество.

Но как узнать, сколько весит атом? Это можно узнать из Периодической таблицы элементов Менделеева, где указана масса каждого элемента. Правда, указана не в привычных нам килограммах, а в специальных единицах атомной массы.


Одна атомная единица массы (а.е.м.) равна 1/12 массы атома углерода, что в численном выражении равно 1,660*10-27 кг.

Молекулой называют наименьшую частицу вещества, обладающую его химическими свойствами.

Молекула состоит из атомов, а точнее, из атомных ядер, окруженных внутренними электронами, тогда как внешние, валентные электроны участвуют в образовании химических связей.

А, например, в случае инертных газов понятия атома и молекулы совпадают.

Каждая молекула имеет определенный качественный и количественный состав. Так, молекула воды состоит из атомов водорода и кислорода (качественный состав), причем в ней содержится один атом кислорода и два атома водорода (количественный состав). Иногда количественный состав молекул выражают в процентах (по массе): в Н2O-11,1% водорода и 88,9% кислорода.

Кроме состава молекулы характеризуются определенной структурой или строением. Часто термины «структура» и «строение» отождествляют, иногда же их различают, говоря о «ядерной структуре» и «электронном строении» молекул. Но в любом случае необходимо четко оговаривать, о чем идет речь: о взаимном расположении и перемещении атомных ядер или же о распределении электронной плотности.

Атомы в молекулах связаны в определенном порядке. Так, в молекуле аммиака NH3 каждый атом водорода соединен одной ковалентной связью с атомом азота; между самими водородными атомами химическая связь отсутствует (последнее, правда, не означает, что между химически несвязанными атомами отсутствует вообще всякое взаимодействие (см. Химическая связь). Наличие связей между одними атомами и отсутствие их между другими изображают в виде так называемых графических, или структурных, формул.

В последнее время в химической литературе все чаще употребляют термин «топология молекул». Топология - это раздел математики, изучающий свойства тел, не зависящие от их формы и размеров. Эти свойства называют неметрическими. Молекулы обладают как метрическими свойствами (длины химических связей, углы между ними и др.), так и неметрическими (молекула может быть циклической, скажем бензол, или нециклической, я-бутан; иметь центральный атом, окруженный лигандами,- PCl5, или представлять собой как бы «клетку» и т. д.). Под топологией молекулы понимают совокупность ее неметрических свойств.

Топология молекулярных систем тесно связана с их свойствами. Например, молекулы этанола и ди-метилового эфира топологически различны, что позволяет понять разницу в некоторых свойствах этих соединений (этанол может давать реакции с участием группы ОН и водорода этой группы, эфир - нет и т. д.). Но свойства молекул зависят не только от их топологии, но и от других факторов (геометрии молекулы, распределения электронной плотности в ней и др., см. Стереохимия).

В последние годы внимание ученых привлек новый класс молекулярных систем - так называемые нежесткие молекулы. Как известно, ядра в молекулах движутся. В силу резкого различия в массах ядер и электронов ядерные движения (колебания) происходят намного медленнее электронных, поэтому можно считать, что электроны в молекулах движутся в поле неподвижных атомных ядер. Конечно, такое допущение является приближением, которое называется адиабатическим. Для многих молекул, где ядра совершают небольшие по амплитуде колебания около определенных положений в пространстве, адиабатическое приближение вполне приемлемо. Такие молекулы называют структурно-жесткими, например СН4, Н2O и т. д. Однако есть молекулы, их называют нежесткими, в которых ядра совершают значительные перемещения. В подобных случаях понятие о неизменной равновесной геометрии молекулы теряет смысл. Например, в борогидриде лития LiBH4 катион Li+ как бы обращается вокруг аниона ВН4 (см. рис. на с. 146, в середине, справа). Разумеется, чтобы ион Li+ смог начать подобное «путешествие», молекула должна получить определенную энергию. Для нежестких молекул эта энергия невелика: для LiBH4 она составляет около 16 кДж/моль, т. е. во много раз меньше энергии химической связи. Другим примером нежесткой молекулы может служить аммиак NH3. Возвращаясь к «обычным», жестким молекулам, следует отметить, что при одном и том же составе они могут иметь различную топологию и геометрию, т. е. давать разного типа изомеры (см. Изомерия; Таутомерия).

Структура и даже состав молекул могут изменяться при изменении агрегатного состояния вещества и внешних условий, главным образом температуры и давления. Например, в газообразном оксиде азота (V) существуют отдельные молекулы N2O5, тогда как в твердом состоянии в узлах кристаллической решетки этого оксида находятся ионы NO2+ и NO3 , т. е. можно сказать, что твердый N2O5 - это соль - нитрат нитрония.

В твердом теле молекулы могут сохранять или не сохранять свою индивидуальность. Так, большинство органических соединений образуют молекулярные кристаллы, в узлах решеток которых находятся молекулы, связанные друг с другом относительно слабыми межмолекулярными взаимодействиями. В ионных (например, NaCl) и атомных (алмаз, графит) кристаллах нет отдельных молекул, и весь кристалл - это как бы одна гигантская молекула. Правда, в последнее время в теории твердого тела начали широко использовать молекулярные модели, однако это потребовало некоторого пересмотра понятия элементарной ячейки кристалла (см. Кристаллохимия).

Изучение строения и свойств молекул имеет фундаментальное значение для естествознания в целом.

Многие опыты показывают, что размер молекулы очень мал. Линейный размер молекулы или атома можно найти различными способами. Например, с помощью электронного микроскопа, получены фотографии некоторых крупных молекул, а с помощью ионного проектора (ионного микроскопа) можно не только изучить строение кристаллов, но определить расстояние между отдельными атомами в молекуле.

Используя достижения современной экспериментальной техники, удалось определить линейные размеры простых атомов и молекул, которые составляют около 10-8 см. Линейные размеры сложных атомов и молекул намного больше. Например, размер молекулы белка составляет 43*10 -8 см.

Для характеристики атомов используют представление об атомных радиусах, которые дают возможность приближённо оценить межатомные расстояния в молекулах, жидкостях или твёрдых телах, так как атомы по своим размерам не имеют чётких границ. То есть атомный радиус – это сфера, в которой заключена основная часть электронной плотности атома (не менее 90…95%).

Размер молекулы настолько мал, что представить его можно только с помощью сравнений. Например, молекула воды во столько раз меньше крупного яблока, во сколько раз яблоко меньше земного шара.

Моль вещества

Массы отдельных молекул и атомов очень малы, поэтому в расчётах удобнее использовать не абсолютные значения масс, а относительные.

Относительная молекулярная масса (или относительная атомная масса ) вещества М r – это отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода.

М r = (m 0) : (m 0C / 12)

где m 0 – масса молекулы (или атома) данного вещества, m 0C – масса атома углерода.

Относительная молекулярная (или атомная) масса вещества показывает, во сколько раз масса молекулы вещества больше 1/12 массы изотопа углерода С 12 . Относительная молекулярная (атомная) масса выражается в атомных единицах массы.

Атомная единица массы – это 1/12 массы изотопа углерода С 12 . Точные измерения показали, что атомная единица массы составляет 1,660*10 -27 кг, то есть

1 а.е.м. = 1,660 * 10 -27 кг

Относительная молекулярная масса вещества может быть вычислена путём сложения относительных атомных масс элементов, входящих в состав молекулы вещества. Относительная атомная масса химических элементов указана в периодической системе химических элементов Д.И. Менделеева.

В периодической системе Д.И. Менделеева для каждого элемента указана атомная масса , которая измеряется в атомных единицах массы (а.е.м.). Например, атомная масса магния равна 24,305 а.е.м., то есть магний в два раза тяжелее углерода, так как атомная масса углерода равна 12 а.е.м. (это следует из того, что 1 а.е.м. = 1/12 массы изотопа углерода, который составляет большую часть атома углерода).

Зачем измерять массу молекул и атомов в а.е.м., если есть граммы и килограммы? Конечно, можно использовать и эти единицы измерения, но это будет очень неудобно для записи (слишком много чисел придётся использовать для того, чтобы записать массу). Чтобы найти массу элемента в килограммах, нужно атомную массу элемента умножить на 1 а.е.м. Атомная масса находится по таблице Менделеева (записана справа от буквенного обозначения элемента). Например, вес атома магния в килограммах будет:

m 0Mg = 24,305 * 1 a.e.м. = 24,305 * 1,660 * 10 -27 = 40,3463 * 10 -27 кг

Массу молекулы можно вычислить путём сложения масс элементов, которые входят в состав молекулы. Например, масса молекулы воды (Н 2 О) будет равна:

m 0Н2О = 2 * m 0H + m 0O = 2 * 1,00794 + 15,9994 = 18,0153 a.e.м. = 29,905 * 10 -27 кг

Моль равен количеству вещества системы, в которой содержится столько же молекул, сколько содержится атомов в 0,012 кг углерода С 12 . То есть, если у нас есть система с каким-либо веществом, и в этой системе столько же молекул этого вещества, сколько атомов в 0,012 кг углерода, то мы можем сказать, что в этой системе у нас 1 моль вещества .

Постоянная Авогадро

Количество вещества ν равно отношению числа молекул в данном теле к числу атомов в 0,012 кг углерода, то есть количеству молекул в 1 моле вещества.

ν = N / N A

где N – количество молекул в данном теле, N A – количество молекул в 1 моле вещества, из которого состоит тело.

N A – это постоянная Авогадро. Количество вещества измеряется в молях.

Постоянная Авогадро – это количество молекул или атомов в 1 моле вещества. Эта постоянная получила своё название в честь итальянского химика и физика Амедео Авогадро (1776 – 1856).

В 1 моле любого вещества содержится одинаковое количество частиц.

N A = 6,02 * 10 23 моль -1

Молярная масса – это масса вещества, взятого в количестве одного моля:

μ = m 0 * N A

где m 0 – масса молекулы.

Молярная масса выражается в килограммах на моль (кг/моль = кг*моль -1).

Молярная масса связана с относительной молекулярной массой соотношением:

μ = 10 -3 * M r [кг*моль -1 ]

Масса любого количества вещества m равна произведению массы одной молекулы m 0 на количество молекул:

m = m 0 N = m 0 N A ν = μν

Количество вещества равно отношению массы вещества к его молярной массе:

ν = m / μ

Массу одной молекулы вещества можно найти, если известны молярная масса и постоянная Авогадро:

m 0 = m / N = m / νN A = μ / N A

Более точное определение массы атомов и молекул достигается при использовании масс-спректрометра – прибора, в котором происходит разделение пучком заряженных частиц в пространстве в зависимости от их массы заряда при помощи электрических и магнитных полей.

Для примера найдём молярную массу атома магния. Как мы выяснили выше, масса атома магния равна m0Mg = 40,3463 * 10 -27 кг. Тогда молярная масса будет:

μ = m 0Mg * N A = 40,3463 * 10 -27 * 6,02 * 10 23 = 2,4288 * 10 -2 кг/моль

То есть в одном моле «помещается» 2,4288 * 10 -2 кг магния. Ну или примерно 24,28 грамм.

Как видим, молярная масса (в граммах) практически равна атомной массе, указанной для элемента в таблице Менделеева. Поэтому когда указывают атомную массу, то обычно делают так:

Атомная масса магния равна 24,305 а.е.м. (г/моль).

уменьшительное от лат. moles - масса) - наименьшая частица вещества, определяющая его свойства и способная к самостоятельному существованию; нейтральная по заряду совокупность атомов, связанных вследствие химического взаимодействия в определенном порядке. Молекулы могут состоять как из одинаковых, так и из различных атомов. Особо выделяются макромолекулы, состоящие из сотен тысяч атомов.

Отличное определение

Неполное определение ↓

МОЛЕКУЛА

уменьшительная форма от лат. moles - масса) - наименьшая частица химического соединения; состоит из системы атомов, с помощью химических средств может распадаться на отдельные атомы. Молекулы благородных газов, гелия и т. д. одноатомны; сложнейшие вещества, напр. молекула яичного белка, состоят из тысяч атомов. Строение и свойства атомов, образующих молекулы, определяют свойства вещества. Молекула водяного пара имеет диаметр 2,6 10&8 см. В 1 см3 газа при температуре 0° и давлении в 1 атм содержится около 27 1018 молекул. Молекулы находятся в постоянном движении, хотя в целом система пребывает в покое. Выделяемая при этом энергия движения называется теплом.