Количество миоглобина у разных видов животных. Структура и функции сложных белков. Строение и функции миоглобина и гемоглобина. Применение Перутцем метода тяжелых атомов для изучения гемоглобина

Белки являются органическими веществами, полимерами, мономерами которых являются аминокислоты. Различные комбинации аминокислот образуют молекулы белков-полимеров. Они представляют собой длинную цепь, структурным звеном которой является повторяющаяся группа атомов в молекуле полимера. Чем больше молекула, тем прочнее полимер.

Миоглобин – это специфический белок, который находится в мышечной ткани (в клетках поперечно-полосатых мышц, в т. ч. в миокарде). Он входит в группу хромопротеинов. Миоглобин содержит гем (простетическая группа), связанный с белковой частью. Фрагмент молекулы белка содержит аминокислоты. Миоглобин является мономером, состоящим из одной цепи. В настоящее время известны следующие его структуры:

  • первичная структура — молекула мономера состоит из одной полипептидной цепи, построенной из аминокислотных остатков;
  • вторичная структура — почти 75% цепи имеет а-спиральную конформацию;
  • третичная структура — а-спираль свернута в компактную глобулу.

Впервые вторичная и третичная структуры миоглобина были определены в 1959 г. учеными Дж. Кендрью и М. Перутц. Для определения третичной структуры белка применялся метод рентгеновского анализа.

Миоглобин и гемоглобин имеют много общего. Оба белка выполняют одинаковую функцию — участвуют в транспорте кислорода. Миоглобин, также как и полимер гемоглобин, присоединяет кислород и создает его запасы в мышцах. Другая его функция: высвобождение кислорода для обеспечения клеток с целью получения энергии, необходимой для работы мышц.

Гемоглобин и миоглобин имеют отличия в структуре. Миоглобин — это мономер. Гемоглобин же является полимером и имеет четвертичную структуру. Существуют некоторые особенности строения и функций этих белков. Гемоглобин выполняет в организме дыхательную функцию и поддерживает постоянство рН крови. Строение полимера: глобин (простой белок) и 4 молекул гема. Миоглобин не способен транспортировать кислород от легких к периферическим тканям. В отличие от полимера в строении миоглобина участвует 1 полипептидная цепь, связанная с гемом. Он легче связывается с кислородом, но труднее его отдает.

Оба белка являются высокотоксичными в случае попадания в кровь в свободном состоянии. В норме миоглобин выводится из организма почками. Его молекулы очень крупные, они закупоривают канальцы почек, вызывая некроз (отмирание) тканей. Свободный миоглобин конкурирует с гемоглобином за связывание с кислородом, при этом он не выполняет свою функцию отдавания кислорода тканям. Это приводит к развитию гипоксии. Самоотравление организма является одной из причин летального исхода при краш-синдроме (синдроме длительного сдавления).

В практической медицине анализ на миоглобин — это один из биохимических маркеров инфаркта. Он является показателем повреждения мускулатуры сердца или мышц. Анализ на биохимию и определение мономера чаще всего делают при подозрении на инфаркт. Другое показание для анализа крови на биохимию — повреждения мышечной ткани. Уровень миоглобина в крови выше нормы – это признак повреждения мышц вследствие длительного сдавления, травмы. Содержание мономера в крови выше нормы свидетельствует о повреждениях почек, развития почечной недостаточности, также он появляется при недугах, характеризующихся поражением мышц.

Норма миоглобина

В норме концентрация миоглобина в крови составляет:

  • у мужчин – 19-92 мкг/л;
  • у женщин – 12-76 мкг/л.

Определение концентрации мономера в крови осуществляется с помощью радиоимунных методов, иммуноферментного анализа. Полученные результаты сравнивают с известной нормой. Превышение нормы концентрации белка в крови выявляется в следующих случаях:

  • инфаркт миокарда;
  • почечная недостаточность;
  • травмы;
  • судороги;
  • ожоги.

Пониженный уровень

Уровень миоглобина в крови ниже нормы является одним из проявлений следующих недугов:

  • ревматоидный артрит;
  • аутоиммунные нарушения;
  • полимиозит;
  • миастения.

Если методы биохимического анализа недостаточно чувствительны, то в крови здорового человека белок может не определяться, что является вариантом нормы.

Гемоглобин - это железосодержащий дыхательный пигмент крови позвоночных и многих беспозвоночных животных, осуществляющий перенос кислорода от органов дыхания к тканям организма. В крови позвоночных и некоторых беспозвоночных гемоглобин содержится внутри в растворенном состоянии.

Молекула гемоглобина позвоночных животных состоит из белка - глобина и железосодержащей группы - гема. В состав гема входят четыре протопорфириновых кольца, каждое из которых содержит двухвалентного железа. Молекулярный вес гемоглобина - 66 000- 68 000. Физиологическая функция гемоглобина как переносчика кислорода основана на его способности обратимо связывать кислород в зависимости от концентрации последнего в крови. В присутствии кислорода гема связывает одну молекулу кислорода, при этом гемоглобин превращается в оксигемоглобин. При взаимодействии гемоглобина с окисью углерода (например, при отравлении этим газом) образуется более стабильный комплекс - карбоксигемоглобин.

Продуктами распада гемоглобина являются многочисленные железопорфириновые комплексы. При этом происходит полное отделение гема от белка (хромопротеида); это отделение протекает с превращением железа в трехвалентную форму. Получаемый железопротопорфирин называется гемином, а его соединения - геминодериватами.

Обычно большую часть гемоглобина в эритроцитах составляет гемоглобин А, или нормальный гемоглобин взрослого человека. При врожденных аномалиях и заболеваниях кроветворного аппарата в эритроцитах появляются аномальные гемоглобины. Это наблюдается, например, при серповидноклеточной анемии (см. ), (см.), врожденной метгемоглобинемии (см.).

Техника определения гемоглобина в крови - см. .

Гемоглобин выполняет в организме важную роль переносчика кислорода и принимает участие в транспорте углекислоты.

Гемоглобин представляет собой сложное химическое соединение (молекулярный вес 68 800). Он состоит из белка глобина и четырех молекул гема. Молекула гема, содержащая атом железа, обладает способностью присоединять и отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т. е. железо остается двухвалентным.

Если обработать гемоглобин раствором соляной кислоты, то от глобина отщепляется гем. Вступая в соединение с соляной кислотой, он превращается в гемин (Ca 34 H 32 N 4 O 4 FeCl), образующий кристаллы характерной формы. Проба на образование гемина производится для доказательства присутствия крови при судебно-медицинских исследованиях.

Рис. 5. Спектры поглощения оксигемоглобина (сверху) и гемоглобина.

В состав молекулы гема входят четыре пиррольных кольца (два из них имеют характер щелочи, а два - кислоты). Атом железа, содержащийся в теме, связывает гем с белковой частью глобином. Если гем теряет атом железа, а пирроловая его структура сохраняется, то получается гематопорфирин. Это вещество в больших количествах образуется в организме при некоторых отравлениях или нарушениях обмена и может выделяться с мочой.

Гем является активной, или так называемой простетической, группой гемоглобина, а глобин - белковым носителем гема. Гемоглобин, присоединивший кислород, превращается в оксигемоглобин (его обозначают символом HbO 2). Оксигемоглобин, отдавший кислород, называется восстановленным, или редуцированным, гемоглобином (Hb). Оксигемоглобин, гемоглобин и некоторые другие соединения и производные гемоглобина дают характерные полосы поглощения лучей спектра. Так, пропуская луч света через раствор оксигемоглобина, можно обнаружить две характерные темные полосы поглощения в желто-зеленой части спектра, между фрауэнгоферовыми линиями D и Е. Для восстановленного гемоглобина характерна одна широкая полоса поглощения в желто-зеленой части спектра (рис. 5).

Оксигемоглобин несколько отличается по цвету от гемоглобина, поэтому артериальная кровь, содержащая оксигемоглобин, имеет ярко-алый цвет, притом тем более яркий, чем полнее произошло ее насыщение кислородом. Венозная кровь, содержащая большое количество восстановленного гемоглобина, имеет темно-вишневый цвет.

Значительно большее поглощение световых лучей с длиной волны 620-680 ммк гемоглобином по сравнению с оксигемоглобином легло в основу методики измерения степени насыщения крови кислородом - оксигемометрии. При этой методике ушную раковину или кювету с кровью просвечивают небольшой электрической лампой и определяют с помощью фотоэлемента интенсивность светового потока указанной длины волны, проходящего через ткань уха или кювету с кровью. По показаниям фотоэлемента определяют степень насыщения гемоглобина кислородом.

Кровь взрослых людей содержит в среднем 14-15% гемоглобина (у мужчин 13,5-16%, у женщин 12,5-14,5%). Общее содержание гемоглобина равно примерно 700 г.

В эмбриональном периоде в крови человека имеются разные типы гемоглобина, отличающиеся способностью присоединять кислород и некоторыми другими химическими свойствами. Для определения и разделения разных типов гемоглобина применяют методику измерения оптической плотности растворов гемоглобина до и после денатурации его едкой щелочью. Разные типа гемоглобина условно обозначают НbА, HbF, НbР. Гемоглобин НЬР встречается только в первые 7-12 недель внутриутробного развития зародыша. На 9-й неделе появляется в крови зародыша гемоглобин HbF и гемоглобин взрослых НbА. Существенно важным представляется тот факт, что эмбриональный гемоглобин HbF обладает более высоким сродством к кислороду и может насыщаться на 60% при таком напряжении кислорода, когда гемоглобин матери насыщается всего на 30%. У разных видов позвоночных животных имеются различия в структуре гемоглобина. Гем разных типов гемоглобина при этом одинаков, глобины же различаются по своему аминокислотному составу.

В организме постоянно происходит синтез и распад гемоглобина, связанные с образованием и разрушением эритроцитов. Синтез гемоглобина совершается в эритробластах красного костного мозга. При разрушении эритроцитов, которое происходит в ретикуло-эндотелиальной системе, главным образом в печени и селезенке, из красных кровяных клеток выходит гемоглобин. В результате отщепления железа от гема и последующего окисления образуется из гемоглобина пигмент билирубин, который затем с желчью выделяется в кишечник, где превращается в стеркобилин и уробилин, которые выводятся с калом и мочой. За сутки разрушается и превращается в желчные пигменты около 8 г гемоглобина, т. е. несколько более 1 %.

В организме человека и животных могут образовываться и другие соединения гемоглобина, при спектральном анализе которых обнаруживаются характерные спектры поглощения. К числу таких соединений гемоглобина относятся метгемоглобин и карбоксигемоглобин. Вещества эти образуются в результате некоторых отравлений.

Метгемоглобин (MetHb) представляет собой прочное соединение гемоглобина с кислородом; при образовании метгемоглобина меняется валентность железа: двухвалентное железо, входящее в молекулу гемоглобина, превращается в трехвалентное. В случае накопления в крови больших количеств метгемоглобина отдача кислорода тканям становится невозможной и наступает смерть от удушения.

Метгемоглобин отличается от гемоглобина коричневым цветом и наличием полосы поглощения в красной части спектра. Метгемоглобин образуется при действии сильных окислителей: феррицианида (красной кровяной соли), марганцовокислого калия, амил- и пропилнитрита, анилина, бертолетовой соли, фенацетина.

Карбоксигемоглобин (HbСО) представляет собой соединение железа гемоглобина с окисью углерода (СО) - угарным газом. Это соединение примерно в 150-300 раз прочнее, чем соединение гемоглобина с кислородом. Поэтому примесь даже 0,1% угарного газа во вдыхаемом воздухе ведет к тому, что 80% гемоглобина оказываются связанными окисью углерода и не присоединяют кислород, что является опасным для жизни.

Слабое отравление угарным газом - обратимый процесс. При дыхании свежим воздухом СО постепенно отщепляется от карбоксигемоглобина и выделяется.

Вдыхание чистого кислорода увеличивает скорость расщепления карбоксигемоглобина в 20 раз. В тяжелых случаях отравления необходимо искусственное дыхание газовой смесью с 95% содержания O 2 и 5% CO 2 , а также переливание крови.

Миоглобин . В скелетной и сердечной мышце находится мышечный гемоглобин, называемый миоглобином. Его простетическая группа - гем - идентична этой же группе молекулы гемоглобина, а белковая часть - глобин - обладает меньшим молекулярным весом, чем белок гемоглобина.

Миоглобин человека способен связывать до 14% от общего количества кислорода в организме. Это его свойство играет важную роль в снабжении кислородом работающих мышц. Если при сокращении мышцы кровеносные капилляры ее сжимаются и кровоток в некоторых участках мышцы прекращается, то все же благодаря наличию кислорода, связанного с миоглобином, в течение некоторого времени сохраняется снабжение мышечных волокон кислородом.

3.2.1. Среди хромопротеинов различают гемопротеины (содержат в качестве простетической группы порфириновые производные) и флавопротеины (содержат производные рибофлавина - витамина B 2). Хромопротеины участвуют в осуществлении многих жизненно важных функций, таких как тканевое дыхание, перенос кислорода, окислительно-восстановительные реакции, светоощущение, фотосинтез в растительных клетках и другие процессы.

3.2.2. К гемопротеинам относятся: гемоглобин, миоглобин, цитохромы, пероксидаза, каталаза. Эти белки содержат в качестве простетической группой гем .

По своему химическому строению гем представляет собой протопорфирин IX , связанный с двухвалентным железом. Протопорфирин IX - органическое соединение, относящееся к классу порфиринов. Протопорфирин IX содержит четыре замещённых пиррольных кольца, соединённых метиновыми мостиками =СН- . Заместителями в пиррольных кольцах являются: четыре метильные группы СН 3 - , две винильные группы СН 2 =СН- и два остатка пропионовой кислоты - СН 2 -СН 2 -СООН . Гем соединяется с белковой частью следующим образом. Неполярные группы. протопорфирина IX взаимодействуют с гидрофобными участками аминокислот при помощи гидрофобных связей. Кроме того, имеется координационная связь между атомом железа и имидазольным радикалом гистидина в белковой цепи. Ещё одна координационная связь атома железа может использоваться для связывания кислорода и других лигандов.

Присутствие в биологическом материале гемсодержащих белков обнаруживается при помощи бензидиновой пробы (при добавлении бензидина и пероксида водорода исследуемый раствор окрашивается в сине-зелёный цвет).

3.2.3. Сравните структуру и функцию миоглобина и гемоглобина, запомните характерные особенности каждого из этих белков.

Миоглобин - хромопротеин, присутствующий в мышечной ткани и обладающий большим сродством к кислороду. Молекулярная масса этого белка около 16000 Да, Молекула миоглобина имеет третичную структуру и представляет собой одну полипептидную цепь, соединённую с гемом. Миоглобин не обладает аллостерическими свойствами (см. 2.4.), кривая насыщения его кислородом имеет вид гиперболы (рисунок 4). Функция миоглобина заключается в создании в мышцах кислородного резерва, который расходуется по мере необходимости, восполняя временную нехватку кислорода.

Гемоглобин (Hb) - хромопротеин, присутствующий в эритроцитах и участвующий в транспорте кислорода к тканям. Гемоглобин взрослых людей называется гемоглобином А (Hb A). Молекулярная масса его составляет около 65000 Да. Молекула Hb А имеет четвертичную структуру и включает четыре субъединицы - полипептидные цепи (обозначаемые α 1 , α 2 , β 1 и β 2 , каждая из которых связана с гемом.

Запомните, что гемоглобин относится к аллостерическим белкам, его молекулы могут обратимо переходить из одной конформации в другую. При этом изменяется сродство белка к лигандам. Конформация, обладающая наименьшим сродством к лиганду, называется напряжённой, или Т-конформацией. Конформация, обладающая наибольшим сродством к лиганду, называется релаксированной, или R-конформацией.

R- и Т-конформации молекулы гемоглобина находятся в состоянии динамического равновесия:

Различные факторы среды могут сдвигать это равновесие в ту или иную сторону. Аллостерическими регуляторами, влияющими на сродство Hb к O 2 , являются: 1) кислород; 2) концентрация Н + (рН среды); 3) углекислота (СO 2) ; 4) 2,3-дифосфоглицерат (ДФГ) . Присоединение молекулы кислорода к одной из субъединиц гемоглобина способствует переходу напряжённой конформации в релаксированную и повышает сродство к кислороду других субъединиц той же молекулы гемоглобина. Это явление получило название кооперативного эффекта. Сложный характер связывания гемоглобина с кислородом отражает кривая насыщения гемоглобина O 2 , имеющая S-образную форму (рисунок 3.1).

Повышение содержания СO 2 , Н + , ДФГ на фоне низкого парциального давления O 2 в тканях способствует взаимодействию этих факторов с гемоглобином и переходу R-конформации в Т-конформацию. Это приводит к смещению равновесия в уравнении (1) вправо. Выделившийся O 2 поступает в ткани.

Рисунок 4. Кривые насыщения миоглобина (1) и гемоглобина (2) кислородом.

Миоглобин содержит небелковую часть (гем) и белковую часть (апомиоглобин).

    Гем - молекула, имеющая структуру циклического тетрапиррола, где 4 пиррольных кольца соединены метиленовыми мостиками и содержат 4 метальные, 2 винильные и 2 пропионатные боковые цепи. Эта органическая часть тема называется протопорфирином. Возможны 15 вариантов расположения боковых цепей, но в составе гемопротеинов присутствует только один изомер, называемый протопорфирин IX. В теме 4 атома азота пиррольных колец протопорфирина IX связаны четырьмя координационными связями с Fe 2+ , находящимся в центре молекулы (рис. 1-29).

    Апомиоглобин - белковая часть миоглобина; первичная структура представлена последовательностью из 153 аминокислот, которые во вторичной структуре уложены в 8 ?-спиралей. ?-Спирали обозначают латинскими буквами от А до Н, начиная с N-конца полипептидной цепи, и содержат от 7 до 23 аминокислот. Для обозначения индивидуальных аминокислот в первичной структуре апомиоглобина используют либо написание их порядкового номера от N-конца (например, Гис 64 , Фен 138), либо букву?-спирали и порядковый номер данной аминокислоты в этой спирали, начиная с N-конца (например, Гис F 8).

    Третичная структура имеет вид компактной глобулы (внутри практически нет свободного места), образованной за счёт петель и поворотов в области неспирализованных участков белка. Внутренняя часть молекулы почти целиком состоит из гидрофобных радикалов, за исключением двух остатков Гис, располагающихся в активном центре.

3.Связывание гема с апомиоглобтом

Гем - специфический лиганд апомиоглобина, присоединяющийся к белковой части в углублении

между двумя?-спиралями F и Е. Центр связывания с гемом образован преимущественно гидрофобными остатками аминокислот, окружающими гидрофобные пиррольные кольца тема. Две боковые группы пропионовых кислот, ионизированные при физиологических значениях рН, выступают на поверхности молекулы.

В активный центр апомиоглобина кроме гидрофобных аминокислот входят также 2 остатка Гис (Гис 64 и Гис 93 или Гис Е 7 и Гис F 8), играющие важную роль в функционировании белка. Они расположены по разные стороны от плоскости тема и входят в состав спиралей F и Е, между которыми располагается гем. Атом железа в теме может образовывать 6 координационных связей, 4 из которых удерживают Fe 2+ в центре протопорфирина IX (соединяя его с атомами азота пиррольных колец), а 5-я связь возникает между Fe 2+ и атомом азота имидазольного кольца Гис F 8 (рис. 1-30).

Гис Е 7 хотя и не связан с гемом, но необходим для правильной ориентации и присоединения другого лиганда - О 2 к миоглобину.

Аминокислотное окружение тема создаёт условия для довольно прочного, но обратимого связывания О 2 с Fe 2+ миоглобина. Гидрофобные остатки аминокислот, окружающие гем, препятствуют проникновению в центр связывания миоглобина воды и окислению Fe 2+ в Fe 3+ . Трёхвалентное железо в составе тема не способно присоединять О 2 .

Структура и функции гемоглобина

Гемоглобины - родственные белки, находящиеся в эритроцитах человека и позвоночных животных. Эти белки выполняют 2 важные функции:

    перенос О 2 из лёгких к периферическим тканям;

    участие в переносе СО 2 и протонов из периферических тканей в лёгкие для последующего выведения из организма.

Кровь ежедневно должна переносить из лёгких в ткани около 600 л,О 2 . Так как О 2 плохо растворим в воде, то практически весь кислород в крови связан с гемоглобином эритроцитов. От способности гемоглобина насыщаться О 2 в лёгких и относительно легко отдавать его в капиллярах тканей зависят количество получаемого тканями О 2 и интенсивность метаболизма. С другой стороны, О 2 - сильный окислитель, избыток поступления О 2 в ткани может привести к повреждению молекул и нарушению структуры и функций клеток. Поэтому важнейшая характеристика гемоглобина - его способность регулировать сродство к О 2 в зависимости от тканевых условий.

Гемоглобины, так же как миоглобин, относят к гемопротеинам, но они имеют четвертичную структуру (состоят из 4 полипептидных цепей), благодаря которой возникает возможность регуляции их функций.

Четвертичная структура гемоглобина

Четыре полипептидные цепи, соединённые вместе, образуют почти правильную форму шара, где каждая?-цепь контактирует с двумя?-цепями (рис. 1-32).

Так как в области контакта между? 1 - и? 1 -, а также между? 2 - и? 2 -цепями находится много гидрофобных радикалов, то между этими полипептидными цепями формируется сильное соединение за счёт возникновения в первую очередь гидрофобных, а также ионных и водородных связей. В результате образуются димеры? 1 ? 1 , и? 2 ? 2 . Между этими димерами в тетрамерной молекуле гемоглобина возникают в основном полярные (ионные и водородные) связи, поэтому при изменении рН среды в кислую или щелочную сторону в первую очередь разрушаются связи между димерами. Кроме того, димеры способны легко перемещаться относительно друг друга. Так как поверхность протомеров неровная, полипептидные цепи в центральной области не могут плотно прилегать друг к другу, в результате в центре формируется "центральная полость", проходящая сквозь всю молекулу гемоглобина.

Кривые диссоциации О 2 для миоглобина и гемоглобина

Кооперативность в работе протомеров гемоглобина можно наблюдать и на кривых диссоциации О 2 для миоглобина и гемоглобина (рис. 1-35).

Отношение занятых О 2 участков связывания белка к общему числу таких участков, способных к связыванию, называется степенью насыщения этих белков кислородом. Кривые диссоциации показывают, насколько насыщены данные белки О 2 при различных значениях парциального давления кислорода.

Кривая диссоциации О 2 для миоглобина имеет вид простой гиперболы. Это указывает на то, что миоглобин обратимо связывается с лигандом, и на это не оказывают влияние никакие опсторонние факторы (схема ниже).

.

Процессы образования и распада оксимиоглобина находятся в равновесии, и это равновесие смещается влево или вправо в зависимости от того, добавляется или удаляется кислород из системы. Миоглобин связывает кислород, который в капиллярах тканей высвобождает гемоглобин, и сам миоглобин может освобождать О 2 в ответ на возрастание потребностей в нём мышечной ткани и при интенсивном использовании О 2 в результате физической нагрузки.

Миоглобин имеет очень высокое сродство к О 2 . Даже при парциальном давлении О 2 , равном 1-2 мм рт. ст., миоглобин остаётся связанным с О 2 на 50%.

Кривая диссоциации О 2 для гемоглобина. видно, что гемоглобин имеет значительно более низкое сродство к О 2 ; полунасыщение гемоглобина О 2 наступает при более высоком давлении О 2 (около 26 мм рт. ст.). Кривая диссоциации для гемоглобина имеет сигмоидную форму (S-образную). Это указывает на то, что протомеры гемоглобина работают кооперативно: чем больше О 2 отдают протомеры, тем легче идёт отщепление последующих молекул О 2 .

В капиллярах покоящихся мышц, где давление О 2 составляет около 40 мм рт. ст., большая часть кислорода возвращается в составе оксигемоглобина обратно в лёгкие. При физической работе давление О 2 в капиллярах мышц падает до 10-20 мм рт. ст. Именно в этой области (от 10 до 40 мм рт. ст.) располагается "крутая часть" S-образной кривой, где в наибольшей степени проявляется свойство кооперативной работы протомеров.

Следовательно, благодаря уникальной структуре каждый из рассмотренных белков приспособлен выполнять свою функцию: миоглобин - присоединять О 2 , высвобождаемый гемоглобином, накапливать в клетке и отдавать в случае крайней необходимости; гемоглобин - присоединять О 2 в лёгких, где его насыщение доходит до 100%, и отдавать О 2 в капиллярах тканей в зависимости от изменения в них давления О 2 .

Миоглобин содержится в красных мышцах и участвует в запасании кислорода. В условиях кислородного голодания (например, при сильной физической нагрузке) кислород высвобождается из комплекса с миоглобином и поступает в митохондрии мышечных клеток, где осуществляется синтез АТР (окислительное фосфорилирование; см. гл. 13).

Первичная структура и распределение аминокислот

Миоглобин состоит из единичной полипептидной цепи с мол. массой 17000; никаких особенностей в характере составляющих его 153 аминокислотных остатков не обнаруживается. При анализе же их пространственного распределения четко выявляется одна особенность: на поверхности молекулы находятся полярные остатки, а внутри структуры - неполярные; это свойство характерно для глобулярных белков. Остатки, содержащие одновременно и полярные, и неполярные группы (например, Thr, Тrр, расположены так, что неполярные группы ориентируются внутрь глобулы. Если не считать двух остатков гистидина, принимающих участие в связывании кислорода, то внутренние области миоглобина содержат только неполярные остатки (например, Leu, Val, Phe, Met).

Вторичная и третичная структура миоглобина

Как показывает рентгеноструктурный анализ, миоглобин представляет собой компактную, примерно сферическую молекулу размером 4,5 х 3,5 х 2,5 нм (рис. 6.3). Примерно 75% остатков образуют восемь правых а-спиралей, содержащих от 7 до 20 остатков. Начиная с N-конца, спирали обозначают буквами от А до Н. Участки, соединяющие спирали, обозначают двумя буквами, указывающими соответствующие спирали. Индивидуальным остаткам присваивают букву, указывающую спираль, в которой они находятся, и порядковый номер, отсчитываемый от -конца спирали. Например, восьмой остаток в спирали F, им является гистидин. Остатки, далеко отстоящие друг от друга вдоль цепи (например, принадлежащие разным спиралям), могут быть пространственно сближены; например, довольно близко находятся остатки гистидина (проксимальный) и (дистальный) (рис. 6.3).

Ряд данных свидетельствует о том, что в растворе вторичная и третичная структуры миоглобина

Рис. 6.3. Модель молекулы миоглобина. Контуры - это очертания, наблюдаемые при низком разрешении. Изображены в основном только атомы а-углерода и гем. (Из статьи Dickerson R. Е. In: The Proteins, 2nd ed., Vol. 2. Neurath H. (editor). Academic Press, 1964, с любезного разрешения.)

близки к структуре кристаллического миоглобина. В обоих случаях наблюдаются практически идентичные спектры поглощения; кристаллический миоглобин связывает кислород; содержание а-спиралей в растворе, оцениваемое по дисперсии оптического вращения и круговому дихроизму, сходно с данными, полученными методом рентгеноструктурного анализа.

Влияние гема на конформацию миоглобина

При понижении pH до 3,5 образуется апомиоглобин (миоглобин, не содержащий гема), и содержание а-спиралей резко падает, а последующее добавление мочевины к апомиоглобину при нейтральном pH приводит к почти полному их исчезновению. Последующее удаление мочевины диализом и добавление гема полностью восстанавливает число а-спиралей, а добавление приводит к полному восстановлению биологической (кислородсвязываю-щей) активности. Таким образом, информация, содержащаяся в первичной структуре апомиоглобина, в присутствии гема однозначно детерминирует свертывание молекулы белка с образованием нативной, биологически активной конформации. Это важное положение распространяется и на другие белки: первичная структура белка определяет его вторичную и третичную структуру.

Пространственная ориентация атома железа, проксимального и дистального остатков гистидина в молекуле миоглобина

Гем в молекуле миоглобина расположен в щели между спиралями Е и F; его полярные пропионатные группы ориентированы к поверхности глобулы, а остальная часть находится внутри структуры и окружена неполярными остатками, за исключением Пятое координационное положение атома железа занято атомом азота гетероциклического кольца проксимального гистидина Дистальный гистидин расположен по другую сторону гемового кольца, почти напротив но шестое координационное положение атома железа остается свободным (рис. 6.4).

Расположение атома железа

В неоксигенированном миоглобине атом железа на 0,03 нм выступает из плоскости кольца в направлении . В оксигенированном миоглобине атом кислорода занимает шестое координационное положение атома железа, а сам атом железа выступает из плоскости гема только на 0,01 нм. Таким образом, оксигенирование миоглобина сопровождается смещением атома железа и, следовательно, и ковалентно связанных с ним остатков в направлении плоскости кольца; в результате эта область белковой глобулы принимает новую конформацию.

Рис. 6.4. Положение молекулы кислорода в теме после ок-сигснирования. Изображены также имидазольные кольца двух важных остатков гистидина в глобиновой цепи, которые располагаются рядом с атомом железа. (Из работы Harper Н. A. et al., Physioldgische Chemie. Springer-Vcrlag, 1975, с любезного разрешения.)

Лиганды

Связь, образующаяся между атомом кислорода и атомом при оксигенировании миоглобина направлена перпендикулярно плоскости кольца гема. Второй атом кислорода удален от дистального гистидина, и связь между атомами кислорода образует относительно плоскости гема угол 121° (рис. 6.5).

Рис. 6.5. Предпочтительные ориентации молекул кислорода и окиси углерода, связанных с атомом железа изолированного гема (темные полоски).

Окись углерода (СО) связывается с изолированным гемом примерно в 25 000 раз более прочно, чем кислород. Поскольку атмосферный воздух содержит следы СО и еще небольшое количество СО образуется в ходе нормального. катаболизма гема, возникает вопрос: почему же шестое координационное положение железа в миоглобине занято не СО, а молекулой 02? Связано это со стерическими ограничениями, возникающими в миоглобине. Молекула СО, связываясь с гемом, стремится принять такую ориентацию, при которой все три атома (Fe, находятся вдоль линии, перпендикулярной плоскости кольца гема (рис. 6.6). Для изолированного гема такая ориентация вполне возможна, но в миоглобине связыванию СО в такой ориентации стерически препятствует дистальный гистидин (рис. 6.6). Поэтому СО связывается в менее благоприятной конфигурации, что понижает прочность связи СО с гемом более чем на два порядка, так что она становится всего лишь в 200 раз прочнее, чем связь гем-02. Тем не менее небольшая часть молекул миоглобина (около 1%) в нормальных условиях связывает СО.

Кинетика оксигеиирования миоглобина

Почему миоглобин неспособен транспортировать кислород, но зато эффективно его запасает? Количество кислорода, связывающегося с миоглобином («процент насыщения»), зависит от концентрации кислорода в среде, непосредственно окружающей молекулу белка (эту концентрацию выражают как PQ - парциальное давление кислорода). Зависимость между количеством связанного кислорода и PQ можно представить графически в виде кривой насыщения миоглобина кислородом (кривой диссоциации кислорода). Для миоглобина изотерма адсорбции кислорода имеет форму гиперболы (рис. 6.7) в ткани, окружающей легочные капилляры, составляет 100 мм поэтому миоглобин в легких мог бы весьма эффективно насыщаться кислородом.

Рис. 6.6. Ориентация молекул кислорода и окиси углерода, связанных с атомом железа гема в составе миоглобина. Дистальный гистидин препятствует связыванию СО в предпочтительной для этой молекулы ориентации - под углом 90° к плоскости гемового кольца.

Рис. 6.7. Кривая насыщения миоглобина кислородом.

В венозной крови PQ равно 40 мм рт. ст., а в активно работающей мышце-около 20 мм рт. ст. Но даже при парциальном давлении 20 мм рт. ст. степень насыщения миоглобина кислородом будет весьма значительной, и поэтому миоглобин не может служить средством его доставки от легких к периферическим тканям. Однако при кислородном голодании, которым сопровождается тяжелая физическая работа, PQ в мышечной ткани может понизиться и до 5 мм рт. ст.; при столь низком давлении миоглобин легко отдает связанный кислород, обеспечивая тем самым окислительный синтез АТР в митохондриях мышечных клеток.